家长圈 门户 小升初学习 查看主题

小学数学典型应用题【牛吃草问题】

发布者: L先生 | 发布时间: 2020-2-13 12:47| 查看数: 33| 评论数: 0|帖子模式

牛吃草问题

【含义】

“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。这类问题的特点在于要考虑草边吃边长这个因素。
【数量关系】
草总量=原有草量+草每天生长量×天数
【解题思路和方法】
解这类题的关键是求出草每天的生长量。例1:



这是一片新鲜的牧场,现有400份草,每天都均匀地生长6份草。若一开始放26头奶牛,每头奶牛每天吃1份草。这片牧场的草够奶牛吃多少天?

解:

1、本题考查的是牛吃草的问题,解决本题的关键是要求出每天新增加的草量,在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草。

2、由题目可知:原有的草量+新长的草量=总的草量。

奶牛除了要吃掉原有的草,也要吃掉新长的草。原有的草量是不变的。每天新长的草量是匀速的,每天都长6份,每头奶牛每天吃1份,新长的草刚好够6头奶牛吃的量,那么剩下的20头奶牛吃的就是原有的草,每天吃20份,400÷20=20(天),够吃20天。

例2:

一水库原有存水量一定,河水每天均匀入库。5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干。若要求6天抽干,需要 多少台同样的抽水机?
解:
设每台抽水机每天可抽1份水。
5台抽水机20天抽水:5×20=100(份)
6台抽水机15天抽水:6×15=90(份)
每天入库的水量:(100-90)÷(20-15)=2(份)
原有的存水量:100-20×2=60(份)
需抽水机台数:60÷6+2=12(台)
答:要求6天抽干,需要12台同样的抽水机。

例3:


某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。如果同时打开7个检票口,那么需 多少分钟?

解:

1、本题考查的是牛吃草的问题,“旅客”相当于“草”,检票口相当于“牛”。

2、由题目可知,旅客总数由两部分组成:一部分是开始检票前已经排队的原有旅客,另一部分是开始检票后新来的旅客。设1个检票口1分钟检票的人数为1份。那么4个检票口30分钟检票4×30=120(份),5个检票口20分钟检票5×20=100(份),多花了10分钟多检了120-100=20(份),那么每分钟新增顾客数量为20÷10=2(份)。那么原有顾客总量为:120-30×2=60(份)。同时打开7个检票口,我们可以让2个检票口专门通过新来的顾客,其余的5个检票口通过原来的顾客,需要60÷5=12(分钟)。

最新评论

快速回复 返回顶部 返回列表